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Abstract

Protein–deoxyribonucleic acid (DNA) interactions are important in a variety of biological processes. Accurately predicting protein-
DNA binding affinity has been one of the most attractive and challenging issues in computational biology. However, the existing
approaches still have much room for improvement. In this work, we propose an ensemble model for Protein-DNA Binding Affinity
prediction (emPDBA), which combines six base models with one meta-model. The complexes are classified into four types based on
the DNA structure (double-stranded or other forms) and the percentage of interface residues. For each type, emPDBA is trained with
the sequence-based, structure-based and energy features from binding partners and complex structures. Through feature selection
by the sequential forward selection method, it is found that there do exist considerable differences in the key factors contributing
to intermolecular binding affinity. The complex classification is beneficial for the important feature extraction for binding affinity
prediction. The performance comparison of our method with other peer ones on the independent testing dataset shows that emPDBA
outperforms the state-of-the-art methods with the Pearson correlation coefficient of 0.53 and the mean absolute error of 1.11 kcal/mol.
The comprehensive results demonstrate that our method has a good performance for protein-DNA binding affinity prediction.
Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/emPDBA/.
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INTRODUCTION
Protein–deoxyribonucleic acid (DNA) interactions play an impor-
tant role in a variety of biological processes such as DNA
transcription, replication and gene expression regulation [1].
Protein-DNA affinity is a key factor in enabling their interac-
tions and defining structure–function relationships that drive
biological processes [2]. Accurate measurement of binding
affinity is crucial for understanding protein-DNA recognition and
interaction mechanisms and designing drugs with high affinity
and specificity.

Currently, the binding affinity can be measured through exper-
imental methods such as Electrophoretic Mobility Shift Assay [3],
Filter Binding Assay [4], Fluorescence Spectroscopy [5], Isothermal
Titration Calorimetry [6] and Surface Plasmon Resonance [7].
These methods cannot be applied on a large scale due to cost
and constraints. Therefore, accurate computational methods are
urgently needed to predict protein-DNA binding affinity.

Various computational methods for binding affinity prediction
have been developed in the past decades. The classical methods
include free energy perturbation [8], thermodynamic integration
[9] and Molecular Mechanics Poisson-Boltzmann Surface Area
[10]. These methods need molecular dynamics simulations to
sample conformational ensembles, which is time consuming
especially for large-sized systems. Besides the classical ones,
other methods include force field-based scoring function
[11], knowledge-based potential functions [12–14], empirical
scoring functions [15–17] and descriptor-based machine learning
methods [18–20]. These methods have been applied to protein–
protein/ligand binding affinity prediction. Few methods have
been developed for protein-DNA binding affinity prediction
due to the lack of experimentally determined affinity data
and the complexity of protein-DNA interactions [21]. In 2010,
Zhao et al. developed an atomic pairwise statistical potential
DDNA3 [22] from 179 protein-DNA complex structures based
on a distance-scaled, finite ideal-gas reference [13] state and
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applied it as a binding affinity evaluation to the prediction of
DNA binding proteins with a Matthews correlation coefficient
of 0.76. Later in 2020, Yang et al. constructed a protein-DNA
binding affinity dataset containing 100 complex structures and
corresponding experimental affinity data, and proposed PreDBA
algorithm to predict binding affinity, where the complexes are
classified into five types and multiple features are learned
by a stacking regression model [23]. The utilized features in
PreDBA including protein secondary structure types, DNA nearest
neighbor bases and so on, are all extracted from single molecules,
and the features from interfaces and interaction energies are not
considered. We think considering these features is helpful for the
prediction improvement. As we know, the interfacial geometric
complementarity is closely related to the molecular binding
affinity. Generally, the native protein-DNA interfaces are of a
good geometric complementarity, which facilitates the formation
of favorable interaction energies [24]. A study on protein–protein
binding affinity has shown that the number of interface residue
pairwise contacts and buried surface area are highly correlated
with the binding affinity with the correlation coefficients
of −0.59 and − 0.46, respectively, indicating that considering
interfacial geometric complementarity will contribute favorably
to binding affinity prediction [17]. Additionally, the importance
of considering nonbonding interaction energies and statistical
potential to protein-ligand binding affinity prediction has also
been validated in many methods [11, 22, 25].

In this work, we propose an ensemble model for Protein-DNA
Binding Affinity prediction (emPDBA), where complexes are clas-
sified into four types, and the considered features involve the
interface information, nonbonding interaction energies, the sta-
tistical potential developed by us, as well as sequence and struc-
tural features from binding partners. These features are learned
by an ensemble machine learning regression model.

MATERIALS AND METHOD
Datasets
We collected available protein-DNA binding affinity data (disso-
ciation constant Kd under temperature T) from PDBbind database
[21], ProNAB database [26] and the dataset constructed by Yang et
al. in 2020 [23]. After removing the redundancy of complex struc-
tures according to 40% protein sequence similarity with Cluster
Database at High Identity with Tolerance (CD-HIT) program [27], a
total of 340 samples were finally obtained. From them, 36 samples
were selected randomly as an independent testing set PD36, and
the remaining ones as a training set PD304.

The binding affinity is measured using Gibbs free energy (�G)
[28], which is calculated as following equation:

ΔG = RT ln Kd (1)

where T is the temperature, R is the gas constant (1.987 × 10−3

kcal mol−1 K−1) and Kd the dissociation constant. The average
binding free energy in the training/testing set PD304/PD36
is −9.95/−10.16 kcal/mol, with the minimum being −18.05/
−15.00 kcal/mol and the maximum −0.77/−6.87 kcal/mol.

Classification of complexes
The complexes are classified into four types based on the DNA
structure and the percentage of interface residues. First based
on DNA structure, the complexes are classified into two types:
the complexes with double-stranded DNAs (Double) and miscel-
laneous complexes (MISC). And then, the Double complexes are

classified into three types (Double I, Double II and Double III)
based on the percentage of interface residues in protein (≤10%,
10–20% and ≥20%). Here, an interface residue is defined as the
one that has at least one atom closer than 5.0 Å to any atom
of its partner DNA. The complexes in the training/testing dataset
are divided into four types, including 64/2 Double I, 73/12 Double
II, 97/17 Double III and 70/5 MISC types of complexes, with the
detailed information listed in Tables S1 and S2, respectively.

Here, it is necessary to mention the reason for the complex
classification. As we know, DNA molecules generally fold into
double- or single-stranded (sometimes miscellaneous) forms,
which makes them interact with proteins in different ways.
Different from double-stranded DNAs that mainly use their
backbones to interact with proteins due to that their bases all pair
up with each other, the single-stranded or miscellaneous DNAs
can form, besides backbone interactions, extensive hydrogen
bonding and aromatic ring stacking interactions with proteins
using their free and exposed bases, which is the main reason for
our distinguishing MISC from Double types. For Double types,
they are further divided into three types based on the percentage
of interface residues in protein due to the fact that the binding
affinity is closely related to the interface area which has been
proven in protein–protein interactions [17, 29]. And it has been
found that the classification according to the percentage of bind-
ing site residues in protein can effectively improve the correlation
between the characteristics and affinity in each type and improve
prediction performance [30]. A similar classification method has
been adopted in a protein-DNA binding affinity prediction [23].

Feature extraction
A set of 106 features are extracted from protein, DNA and their
complex structure for a protein-DNA complex. The specific fea-
tures are described below.

Features from protein
A total of nine sequence- and 22 structure-based features are
extracted from the protein side. The former contain molecular
mass, and the numbers and percentages of four types of residues
including nonpolar residues (Ala, Val, Leu, Ile, Phe, Trp, Met and
Pro), polar uncharged residues (Thr, Ser, Cys, Asn, Gln, Tyr and
Gly), positively charged residues (Lys, Arg and His) and negatively
charged residues (Asp and Glu). The latter contain the number
and percentage of residues in each of the eight types of secondary
structures including α-helix, β-bridge, β-ladder, 310-helix, π-helix,
turn, bend and the irregular, amounts and molecular masses of α-
helix and β-sheet, solvent accessible surface area (SASA) [31] and
the volume of protein. The programs Define Secondary Structure
of Proteins (DSSP) [32] and Accessibility Calculation (NACCESS)
[33] are used to obtain protein secondary structure information
and SASA, respectively.

Features from DNA
A total of 33 sequence- and two structure-based features are
extracted from DNA side. The former contain the amounts and
percentages of 16 types of dinucleotides (like cytosine-guanine
dinucleotides (CG), adenine-thymine dinucleotides (AT) and so
on), as well as molecular mass of DNA. The latter contain the
SASA and volume of DNA.

Features from complex
A total of 18 interface-based features, 16 energy-based features
and six other features are extracted. Interface-based features
contain the amount and percentage of each type of residues (four
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types mentioned above) and nucleotides (four types) at bind-
ing interface, interface area and the amount of hydrogen bonds
between protein and DNA obtained by Visual Molecular Dynamics
(VMD) [34]. Energy-based features contain one knowledge-based
statistical potential, seven physical energy items and the eight
energy features calculated by Matched interface and boundary-
based Poisson–Boltzmann equation solver (MIBPB) program [25]
including the reaction field energies and electrostatics solvation
energies of protein, DNA and their complex, respectively, and the
differences of the two energies of protein and DNA between their
monomers and complex.

The 60 × 4 residue-nucleotide pairwise potential (Erp) with pro-
tein secondary structure information considered was extracted
by us from 1545 non-redundant protein-DNA complexes. We col-
lected all the 5387 protein-DNA complex structures from Nucleic
Acid database in October 2020. After removing the redundancy of
complex structures according to 70%/90% protein/DNA sequence
similarity, the non-redundant database was constructed. Based
on the analysis of the interface preferences of protein secondary
structures, it is found that the preferences of different secondary
structures vary greatly. Thus, based on their interface prefer-
ences (>1, ≈1 and <1), they were classified into three types.
Thus, considering protein secondary structure information, the
60 × 4 amino acid-nucleotide pairwise preferences were calcu-
lated according to the formula:

PI
ai−b =

NI
ai−b/

∑
aib

NI
ai−b(

NS
ai/

∑
ai

NS
ai

)
×

(
NS

b/
∑
b

NS
b

) (2)

where a is the type of 20 kinds of amino acids, i is the type of three
kinds of protein secondary structures, b is the type of four kinds
of nucleotides, NI

ai−b represents for the number of ai-b pairs at the
interfaces,

∑
aib

NI
ai−b represents for the number of all amino acid-

nucleotide pairs at the interfaces, NS
ai is the number of a amino

acid in i secondary structure at surfaces,
∑
ai

NS
ai is the number

of all amino acids at surfaces, NS
b and

∑
b

NS
b are the numbers of

b nucleotide and all nucleotides at surfaces, respectively. Here,
an amino acid-nucleotide pair is defined as the pair having at
least one atom within 5.0 Å distance from each other. According
to Boltzmann distribution principle, pairwise preferences were
converted into corresponding statistical potential energies. When
evaluating the statistical potential energy of a complex, the
energy contributions of all interface pairs were summed up.

The seven physical energy items include van der Waals attrac-
tive (Eattr

vdw) and repulsive (Erep
vdw) energies, electrostatic short-range

attractive (Esa
ele) and repulsive (Esr

ele) energies, electrostatic long-
range attractive (Ela

ele) and repulsive (Elr
ele) energies and the electro-

static energy (Eele) [35]. The modified Lennard-Jones 6–12 potential
[36] is adopted for van der Waals attractive and repulsive energies:

Eattr
vdw =

∑
i

∑
j

εij

[(
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)12

− 2
(
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)6
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if rij ≥ 0.89 × rs,ij (3)

Erep
vdw =

∑
i

∑
j

10.0 ×
(

1 − rij

0.89 × rs,ij

)
if rij < 0.89 × rs,ij (4)

where rs,ij is the sum of van der Waals radii of heavy atoms i
and j from the interacting partners, respectively, rij is the dis-
tance between the two atoms, and εij is the square root of the
product of well depths. The van der Waals energy is continuous
at rij = 0.89 × rs,ij. The electrostatic energy is calculated by the

Coulomb model adopted in RosettaDock [37]:

Eele =
∑

i

∑
j

332qiqj

εrRij
=

∑
i

∑
j

332qiqj

R2
ij

(5)

where Rij = max (rij, 3 Å) to avoid singularities while rij is too small.
Interactions are divided into attractive and repulsive categories
according to the negative and positive interactions, as well as
short-range (rij<5 Å) and long-range (rij ≥ 5 Å). All the parameter
values are taken from the CHARMM19 [38] force field.

Other features contain the volume of complex and five topolog-
ical features including average degree, average cluster coefficient,
average degree centrality, average closeness centrality and aver-
age betweenness. Topological features are calculated by Python
package NetworkX. In network construction, Cα atom and P atom
are used to represent an amino acid and nucleotide, respectively,
and the cutoff values of 7 Å, 13 Å and 10 Å are used to determine
whether there are connections between amino acids, between
nucleotides and between amino acid and nucleotide, respectively.

Feature selection
Feature selection can not only avoid overfitting but also make
the model more interpretable by reducing the redundant and
irrelevant features. Here the sequential forward selection (SFS)
[39] combined with the Gradient Boosted Regression Trees (GBRT)
[40] with default parameters is adopted to determine the optimal
feature combination. SFS is a greedy algorithm that iterates to
obtain the optimal subset of features. In each iteration, the best
new feature is selected out based on the cross-validation score to
add to the subset of features. It is started with an empty subset
of features and the best single feature with the highest score is
added in each iteration. The process is repeated until the score
does not improve any more, or the number of selected features
reaches a set point (here 20). The optimal subset of features is
selected through maximizing the determination coefficient R2

(defined in section of Performance evaluation) via 3-fold cross-
validation for 10 times on the training dataset.

Ensemble regression model
Stacking method, an ensemble learning strategy, is to combine
multiple basic models to get a better learning model. In our
work, a double-layer stacking model is used to predict protein-
DNA binding affinity, where Decision Tree Regression (DTR) [41],
Random Forest Regression (RFR) [42], Adaboost Regression (AdaR)
[43], Bootstrap aggregating Regression (BagR) [44], GBRT [40] and
Extreme Gradient Boosting Regression (XGBR) [45] are used to
learn the feature matrices of the input, and then the Linear
Regression (LR) is used to fit the relationship between the outputs
of these models and the sample labels.

Architecture of emPDBA algorithm
The emPDBA predictor is trained on the protein-DNA binding
affinity dataset PD304. First protein-DNA complexes are classified
into four types based on the rules mentioned in MATERIALS AND
METHOD. And then multiple features from proteins, DNAs and
their complexes are extracted for feature selection. The subset
of optimal features is selected out for each type of complexes
by the SFS method and then is utilized to train the stacking
ensemble regression model. Finally, four different ensemble mod-
els are obtained to predict the protein-DNA binding affinity of the
corresponding type of complexes. The flowchart of emPDBA is
shown in Figure 1.
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Figure 1. Flowchart of emPDBA for protein-DNA binding affinity prediction. First, the dataset of 304 complexes is used as the training set, which are
divided into four types: complexes with double-stranded DNAs (Double I, Double II, Double III) and MISC. Next, multiple features are extracted, including
interface and interaction features as well as sequence- and structure-based features from binding partners. And then, a set of optimal features are
selected out by the SFS algorithm, and used to train the ensemble regression model constructed by six base models DTR, RFR, AdaR, BagR, XGBR, GBRT
and a meta-model LR. Finally, the model performance is evaluated on the independent testing dataset including 36 complexes.

Performance evaluation
The emPDBA is tuned on the training dataset PD304 using 5-fold
cross-validation and tested on the independent testing dataset
PD36. The predictive performance of the regression model is
assessed with Pearson correlation coefficient r, determination
coefficient R2 and mean absolute error MAE that are defined as
follows:

r =
∑n

i=1

(
ŷi − ŷ

) (
yi − y

)
√∑n

i=1

(
ŷi − ŷ

)2√∑n
i=1

(
yi − y

)2
(6)

R2 = 1 −
∑n

i=1

(
ŷi − yi

)2

∑n
i=1

(
yi − y

)2 (7)

MAE = 1
n

∑n

i=1
| yi − ŷi | (8)

where n is the number of samples, ŷi and yi are the predicted and
actual values of the ith sample, and ŷ and y represent the mean
of predicted and actual values, respectively.

RESULTS AND DISCUSSION
Comparison in prediction performance of models
trained on classified and unclassified training
datasets
In order to detect the effect of protein-DNA complex classifica-
tion on the prediction performance, we trained ensemble regres-
sion models on the unclassified and classified data from PD304
training dataset with 5-fold cross-validation process, respectively.
The scatter plots of the experimental and predicted �G for the
two models are shown in Figure 2 (A) and (B), respectively. From
Figure 2, the predictions from the model trained on the clas-
sified data [Figure 2 (B)] fit the diagonal line more nicely with
the correlation coefficient r of 0.66 (P-value = 2.80 × 10−38) and
MAE of 1.24, much better than the corresponding values 0.12 (P-
value = 0.04) and 1.64 for the predictions from the model trained
on the unclassified data [Figure 2 (A)]. In addition, the results on

the independent testing set show that the predictions from the
former model are also much better than those from the latter
one, with the correlation coefficients of 0.53 and 0.12, respectively.
The above results indicate that the complex classification sig-
nificantly improves the prediction performance of the ensemble
model for protein-DNA binding affinity. The reason, we think,
is that there exist different interaction modes/mechanisms in
protein-DNA complexes, and our adopted classification rules can
well distinguish the differences (see the section of Analyses of
selected features from different types of complexes for detailed
analyses), which is beneficial for the feature selection scheme
and ensemble model to learn the modes/mechanisms within each
type of complexes.

Analyses of selected features from different
types of complexes
Considering the improved prediction performance of the model
trained on the classified complexes, it is worth analyzing which
features are selected from different types of complexes. Table S3
lists the selected features by feature selection procedure for each
type of complexes.

For Double I type, the selected features worthy of note include
average degree centrality, interface area, amounts of bend and
turn residues in protein, percentage of β-bridge residues in pro-
tein, percentage of positively charged residues in binding sites,
among which average degree centrality and percentage of β-
bridge residues in protein have the highest correlation (−0.26)
with binding affinity.

For Double II type, those features include interface area, van
der Waals repulsive energy, electrostatic short-range attraction
energy and percentage of polar uncharged residues in binding
sites, among which the latter two have the highest correlation
of 0.33 and −0.32, respectively, implying that the electrostatic
interactions are very important for stabilizing the type of com-
plexes. Figure S1 (a) shows the interaction interface for an exam-
ple (PDB ID 4QPQ) in this type, where the percentage of polar
uncharged (mainly involving tyrosine and serine) amino acids
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Figure 2. Scatter plots of the experimental and predicted �G from the prediction models trained on the unclassified (A) and classified (B) data from the
training dataset.

reaches 44.16%. Residues tyrosine and serine have been found to
be key residues for specific recognition with DNA [46].

For Double III type, those features include amount of interfacial
hydrogen bonds, percentage of polar uncharged residues in pro-
tein, amount of α-helix residues in protein and mass and amount
of α-helices in protein. It seems that α-helix plays an important
role for the intermolecular interactions of this type. Figure S1 (b)
shows an example (PDB ID 1JJ4) for this type where the helix
motifs are inserted into the DNA major grooves to form extensive
hydrogen bond interactions.

For MISC type, the complex structures are more complicated,
including the complexes with single-stranded DNAs and the ones
with multiple DNA strands. The selected features worthy of note
include percentages of nucleotides A and C in binding sites,
percentages of dinucleotides GA and TG, amount of nonpolar
residues in protein, percentage of nonpolar residues in bind-
ing sites and percentage of 310-helix residues in protein, among
which percentage of nucleotide A in binding sites (−0.31), as
well as amounts of dinucleotides thymine-guanine (TG) (−0.24)
and guanine-adenine (GA) (−0.23) have high correlations with
binding affinity. It seems that the component features from DNA
contribute important roles to intermolecular interactions of this
type, which is worthy of exploring in the future study.

To sum up, there do exist differences in the key factors
contributing to intermolecular interactions of different complex
types. The complex classification is beneficial for important fea-
ture extraction used for protein-DNA binding affinity prediction.

Comparison with other single regression
methods
To illustrate the effectiveness of the ensemble model, we com-
pared the prediction performances of emPDBA and its six single
regression models including DTR [41], RFR [42], AdaR [43], BagR
[44], GBRT [40] and XGBR [45] on the training set PD304, with
the results listed in Table 1. All the models were tuned on the
four types of complexes via 5-fold cross-validation process. From
Table 1, generally GBRT has the best performance among the six
single models, while the other five have their own advantages.
For example, for Double I and Double II types, AdaR and XGBR
obtain the best performances respectively. GBRT is an iterative
tree model, where each iteration learns the residuals of the pre-
vious iteration results and achieves a better prediction accu-
racy through powerful loss functions. As expected, the ensemble
model emPDBA is significantly better than any single model
regardless of the types of complexes on which they are tested.

Besides, we further compared the predictions from different
combinations of models, with the results shown in Figure S2. We
tried different combinations of models, including the combina-
tions of the best three models (GBRT + XGBR + AdaR), the best
four models (GBRT + XGBR + AdaR + BagR), the best five models
(GBRT + XGBR + AdaR + BagR + RFR) and all the six models
(our ensemble model). From Figure S2, each of the combinations
is better than all the single ones. With the increasing of the
number of models considered in the combination, the prediction
performance has a slight improvement with average R2, r and
MAE being ∼0.40, 0.60 and 1.30, respectively. Combining the six
single models, the ensemble model has the best performance with
average R2, r and MAE being 0.44, 0.66 and 1.24, respectively.

Comparison of emPDBA with state-of-the-art
approaches
We compared the performances of our method with DDNA3 [22]
and PreDBA [23] on the independent testing dataset PD36, with
the results shown in Figure 3 and Table 2. DDNA3 is a knowledge-
based potential for protein-DNA binding affinity prediction, and
PreDBA is a stacking machine learning approach utilizing GBRT,
AdaR and BagR single regression models with sequence and struc-
ture information from monomer protein and DNA considered.
From Figure 3, most of the predictions from emPDBA are closer
to the diagonal line with correlation coefficient r of 0.53 (P-
value = 9.56 × 10−4) and MAE of 1.11 kcal/mol, much better than
the corresponding values 0.09 (P-value = 0.624)/0.30 (P-value = 0.07)
and 1.80/2.05 kcal/mol from DDNA3/PreDBA (Table 2). Therefore,
our method outperforms existing methods in predicting protein-
DNA binding affinity on the independent dataset.

Figure 4 displays each prediction result of our emPDBA on
the 36 samples from the independent testing set. Obviously, from
Figure 4 almost half of the samples are accurately predicted, and
only several samples mainly with low binding affinity are not well
predicted. It is found that there are 66.67% of the samples that
have the absolute error is <1.00 kcal/mol.

Our method emPDBA outperforms other methods, and the
likely reasons we think are mainly from two aspects. One aspect
is our construction of a new and larger dataset of 340 protein-
DNA complexes with binding affinity data, and the corresponding
numbers are 179 and 100 in DDNA3 and PreDBA methods. Much
more training data can make the model learn more compre-
hensive interaction patterns within the complexes. Another
aspect is the methodological improvement. In method DDNA3,
a statistical energy function is trained based on the atomic

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/4/bbad192/7165253 by Beijing U

niversity of Technology user on 22 July 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad192#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad192#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad192#supplementary-data


6 | Yang et al.

Table 1. Comparison of the correlation coefficients obtained by the ensemble model with single regression models on training dataset

Complex Type DTR RFR AdaR BagR XGBR GBRT emPDBA

Double I 0.33 0.60 0.64 0.58 0.63 0.63 0.72
Double II 0.41 0.57 0.55 0.55 0.62 0.61 0.73
Double III 0.42 0.46 0.51 0.49 0.52 0.54 0.62
MISC 0.37 0.42 0.41 0.40 0.52 0.53 0.55

The bold values indicate the best results.

Figure 3. Scatter plot of experimental and predicted �G by DDNA3,
PreDBA and emPDBA on the independent testing dataset.

Table 2. Comparison of the evaluation metrics obtained by
emPDBA with DDNA3 and PreDBA on the independent testing
set

Method r MAE (kcal/mol)

emPDBA 0.53 1.11
PreDBA 0.30 2.05
DDNA3 0.09 1.80

The bold values indicate the best results.

Figure 4. Point plot of the experimental and predicted �G by emPDBA for
each sample from independent testing set.

pairwise information of proteins and DNAs in complexes to pre-
dict binding affinities. Compared with DDNA3, emPDBA utilizes
more interface and interaction features (including number of
hydrogen bonds, complex network features, electrostatic and
van der Waals interaction energies, our own developed statistical

potential, etc.) as well as the respective sequence and structural
features of proteins and DNAs. And the complexes are classified
into four types and the feature selection is performed individually
for each complex types, which makes different key features for
binding affinities selected out for different complex types. These
all largely improve the binding affinity prediction performance.
Compared with PreDBA, emPDBA adopts the similar complex
classification and ensemble model strategies, but more interface
and interaction features mentioned above are introduced in
emPDBA. PreDBA only uses the characteristics of proteins and
DNA monomers. Some protein–protein [17] and protein-ligand
binding affinity prediction works [11, 22, 25] also indicate that
the interface and interaction characteristics can improve the
performance of binding affinity prediction.

CONCLUSION
We propose an ensemble machine learning approach emPDBA to
predict protein-DNA binding affinity. Considering the
differences in protein-DNA binding modes, we classify complex
structures into four types. The multiple features, including not
only sequence- and structure-based features from monomer
protein and DNA, but also interfacial and interaction features
from the complex structure, are extracted and learned by
the ensemble regression model. The analyses on feature
contributions indicate that different important features can be
captured for different types of complexes, which is beneficial
for binding affinity prediction. The prediction performance of
emPDBA on the independent testing dataset achieves Pearson
correlation coefficient of 0.53 and the mean absolute error of
1.11 kcal/mol. The emPDBA algorithm outperforms the state-of-
the-art approaches, giving a much better prediction for protein-
DNA binding affinity.

As for application, the structure-based emPDBA for protein-
DNA binding affinity prediction has several important applica-
tions. First, our method can provide a binding affinity reference for
the protein-DNA complexes with known structures but no binding
affinity data and also for their mutants. For the latter, users need
to perform a simple energy optimization on the mutated complex
before using emPDBA. Besides, the binding affinity can also be
used for the evaluation of docking decoys, and therefore our
method can serve as a scoring function for protein-DNA docking.
Moreover, emPDBA can also be applied to the template-based
prediction of DNA binding proteins. Zhou et al. found that the
template-based prediction of DNA binding proteins requires not
only structural similarity between target and template structures
but also prediction of binding affinity between the target and DNA
to ensure binding, and their method with the two aspects consid-
ered shows a substantial improvement over the methods based
on sequence comparison (PSI-BLAST), and structural alignment
(TM-align) [22].

Currently, the lack of experimentally determined affinity data
is still a major obstacle for the development of prediction algo-
rithms. We hope that more reliable predictors can be proposed
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with the increasing of experimental data. Additionally, as for
the prediction accuracy improvement, there are two points that
maybe need to be considered. One is the experimental condi-
tions, since it is common that experimental data are obtained in
different conditions. The other is the molecular conformational
changes that often occur in different extents upon complex for-
mation, and the energies involved in the changes are the parts of
the binding affinity. We believe that considering these factors will
be helpful for the promotion of prediction accuracy of protein-
DNA binding affinity in the future.

Key Points

• Accurately predicting protein-DNA binding affinity has
been one of the most attractive and challenging issues
in computational biology. In this work, we develop an
ensemble machine learning regression model called
emPDBA for the binding affinity prediction, which com-
bines six base models with one meta-model. The results
show that the ensemble strategy can effectively improve
the prediction performance, which is better than any
single model.

• Considering the good robustness of the interresidue
pairwise preference potential, we extracted 60 × 4
residue-nucleotide pairwise potential with protein sec-
ondary structure information considered from the new
constructed non-redundant database containing 1545
protein-DNA complexes. The pairwise potential is used
to predict protein-DNA binding affinity, which has an
excellent performance.

• emPDBA shows a promising prediction power, gener-
ally surpassing the state-of-the-art methods DDNA3
and PreDBA. This work is helpful for strengthening the
understanding of protein-DNA interactions, and has a
potential application in complex structure prediction
and drug discovery and evaluation.
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